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Abstract

This module establishes the mathematical backbone of Prime Fold Theory by proving a
minimal theorem set for fold-time dynamics. We show that positivity, existence/uniqueness,
budget closure, reset locality, and the anti-Zeno property hold under admissible closures. These
results ensure that the invariance law m = � �� is a legitimate conservation principle, not a
numerical artifact.
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1 Introduction

Module 2.1 established that fold-time invariance holds across disparate systems�a damped wave
lattice and a stick�slip quake toy�with cycle correlations at the 10�3 level. This invariance sug-
gested that the primitives of the Structural Recursive Field (SRF)�fold density �, fold-time �� , and
threshold ��are su�cient to characterize structural dynamics independent of substrate.

The purpose of Module 2.2 is to formalize this result into a conservation law. By treating the
product m = ��� as a conserved structural quantity, we can express its evolution through �uxes J
and sources S on arbitrary domains. This generalization has two advantages:

1. Universality � it extends the fold primitives beyond toy models into a �eld equation form
that applies to any medium.

2. Threshold clarity � it embeds the reset logic (u = ��=� � 1) directly into the conservation
framework, ensuring consistency across scales.

Unlike Module 2.1, which emphasized numerical comparison, Module 2.2 restricts itself to the
minimal constitutive forms of J and S that reproduce the observed invariance. The objective is not
exhaustive modeling but to demonstrate that once �ux and source are de�ned, the threshold law is
su�cient to recover invariant cycles.

This sets the stage for subsequent modules: cosmological applications in Module III, where the
same conservation law will anchor predictions of large-scale structure and temporal limits.

2 Preliminaries

2.1 Core Variables

De�nition 2.1 (Fold Variables). We work with three primitive quantities:

� Fold density �(x; t) � 0: a measure of local structural loading.

� Fold-Time ��(x; t) � 0: a history-weighted accumulator of resisted equilibration.

� Threshold �(x) > 0: a local bound that gates collapse events.

The structural mass�like density is de�ned as

m(x; t) = �(x; t) ��(x; t):

2.2 Event Operator

De�nition 2.2 (Collapse Events). A collapse event is triggered when ��(x; t) � �(x) on a support
set E � V . At such an event:

1. ��(x; t+) = 0 for x 2 E (reset),

2. � may be redistributed via an event �ux Jevent.
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2.3 Admissible Transport Closures

Between events, the �ux J transporting m may take several admissible forms:

� Di�usive: J = �Drm with D � 0.

� Advective: J = v(x; t)m with velocity �eld v.

� Wave-like (hyperbolic):

@tm+r � P = 0;

@tP + c2rm = �
P;

where P is �ux momentum, c is wave speed, and 
 � 0 is damping.

Mixed closures are admissible provided they preserve conservation and non-negativity.

2.4 Hazard Functional

De�ne the normalized fold-time

u(x; t) =
��(x; t)

�(x)
:

As u ! 1�, the hazard of collapse increases. The release intensity is governed by a map R(�� ;�)
satisfying the qualitative constraints introduced in Module I.

2.5 Between-Event Dynamics

Between events, the following evolution holds:

@tm+r � J = s(x; t); with s = 0 in closed domains;

@t�� = ��� ��� ; � > 0; � � 0:

2.6 At Events

At an event on support E:

1. �� ! 0 on E,

2. � redistributes via Jevent,

3. the budget of m is closed by the corresponding jump condition.

2.7 Continuity Law for m

Lemma 2.3 (Continuity of m). Between events (when no reset occurs), the structural mass�like
density

m(x; t) = �(x; t) ��(x; t)

satis�es the continuity equation

@tm(x; t) +r � J(x; t) = s(x; t);

with s = 0 in closed domains.

Proof. By construction, m = ��� . Its temporal derivative is balanced by the divergence of a struc-
tural �ux J and any explicit source term s. This is a direct application of the conservation form
assumed in the Fold framework (see Module I). The positivity of � and �� ensures m � 0 through-
out.
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3 Main Results

This section establishes the minimal theorem set needed to show that Fold dynamics are mathemat-
ically well-posed. Each result is a property of the governing system introduced in the Preliminaries:

m(x; t) = �(x; t) ��(x; t); @tm+r � J = s; @t�� = ��� ��� ;

together with the reset operator when �� � �.
The theorems demonstrate:

1. Positivity � Fold variables remain non-negative.

2. Existence and Uniqueness � solutions exist and are not ambiguous.

3. Budget Closure � the invariance law holds in integral form.

4. Reset Locality � post-event evolution depends only on the new state.

5. Anti-Zeno � collapse events cannot accumulate in�nitely in �nite time.

3.1 Positivity Preservation

Theorem 3.1 (Positivity Preservation). Assume initial conditions satisfy

�(x; 0) � 0; ��(x; 0) � 0; �(x) > 0:

Then for all later times t � 0, including across collapse events,

�(x; t) � 0; ��(x; t) � 0; m(x; t) = �(x; t) ��(x; t) � 0:

Proof. Between events, �� evolves by

@t�� = ��� ��� ; � > 0; � � 0:

Since � � 0 and the decay term���� cannot drive �� below zero, the solution preserves non-negativity.
For �, we consider admissible closures for the structural �ux J :

� Di�usive: J = �Drm with D � 0 preserves non-negativity by the maximum principle.

� Advective: J = vm preserves the sign of m along characteristics.

� Wave-like: introducing �ux momentum P yields a damped hyperbolic system with energy

E(t) = 1
2kmk

2 + 1
2c2
kPk2;

which remains non-negative for 
 � 0, ensuring no negative undershoot.

Thus � and m remain non-negative between events.
At an event, the reset operator sets �� ! 0 on the event support E, which forces m ! 0 there.

Redistribution of � via Jevent is assumed admissible (no injection of negative density). Hence all
variables remain non-negative across events.

Therefore, �; �� ; and m are globally non-negative in time.
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3.2 Existence and Uniqueness

Theorem 3.2 (Existence and Uniqueness Between Events). Let V � Rd be a bounded domain with
either periodic or no��ux boundary conditions. Assume initial data �0; ��0 2 L1(V ) with �0 � 0,
��0 � 0, and a threshold �(x) > 0 bounded away from 0. Let s 2 L1

loc
([0;1);L2(V )) be a source term

(with s � 0 in closed domains). Consider the governing system between events:

m = � �� ; @tm+r� J = s; @t�� = ��� � �� ;

with constants � > 0, � � 0, and with J taking one of the admissible closures:

1. Di�usive: J = �Drm with 0 � D 2 L1(V ),

2. Advective: J = vm with v 2W 1;1(V � [0; T ]),

3. Wave-like (damped hyperbolic):

@tm+r� P = s; @tP + c2rm = �
P;

with c > 0 and 
 � 0 bounded.

Then for any T > 0 there exists a (weak/entropy/energy) solution pair (m; ��) on [0; T ] that is
unique within the corresponding solution class. Moreover, if an event time t� � T occurs with
support E � V where ��(�; t�) � �, the reset map

��(�; t�+) = 0 on E; �(�; t�+) obtained via admissible Jevent (� � 0)

de�nes a new well-posed initial state, so the solution continues uniquely on (t�; T ]. Iterating across
�nitely many events on [0; T ] yields a unique piecewise-continuous (global on [0; T ]) solution.

Proof. (i) Existence/uniqueness between events. For the di�usive closure J = �Drm with
bounded nonnegative D, the equation for m is parabolic in divergence form with L1 data and
L1

loc
source; standard parabolic theory gives existence and uniqueness of weak solutions. For the

advective closure J = vm with v 2W 1;1, the equation is a linear transport/conservation law; well-
posedness and uniqueness hold in the entropy/renormalized class. For the wave-like closure, the
(m;P ) system is damped symmetric hyperbolic; energy estimates with c > 0, 
 � 0 yield existence
and uniqueness in the natural energy space. In all cases, �� satis�es a linear ODE with measurable
nonnegative forcing �� and nonnegative damping ��� , so �� 2 W 1;1

loc
exists and is unique once � (or

m) is known.
(ii) Compatibility and continuation. Because �;m; �� remain bounded (by positivity and

the a priori estimates from the corresponding theories) on any compact interval not containing an
event, the solution can be continued up to the �rst event time t� de�ned by ��(�; t�) � � on a support
set E.

(iii) Reset map. At t�, de�ne �� = 0 on E (and unchanged o� E) and update � by an admissible
redistribution Jevent that preserves nonnegativity and boundedness. This produces new initial data
(�(�; t�+); ��(�; t�+)) 2 L1(V ) for the same between-event system, to which part (i) applies again.
Uniqueness is preserved because the reset is a deterministic map on the state.

(iv) Global piecewise solution. Repeating (i)�(iii) across any �nite sequence of event times
in [0; T ] produces a unique piecewise (in time) solution; concatenation gives a unique solution on
[0; T ].

Hence existence and uniqueness hold between events and across admissible resets.
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3.3 Budget Closure

Theorem 3.3 (Budget Closure / Invariance Law). Let V � R
d be a bounded control volume with

boundary @V and outward normal n. Between events, the structural mass�like density m = ���
satis�es

d

dt

Z
V

m(x; t) dV = �

I
@V

J(x; t) � ndA+

Z
V

s(x; t) dV:

At a collapse event occurring on support E � V , the integral balance is modi�ed by the reset operator:Z
V

m(x; t+) dV �

Z
V

m(x; t�) dV = �

Z
E

�mreset(x) dV +

Z
V

s(x; t�) dV �

I
@V

Jevent(x; t
�) � ndA;

where �mreset = ��� is the collapsed mass on E, and Jevent is an admissible event �ux redistributing
� without introducing negative density.

Proof. Between events. By Lemma ??Continuity of m), @tm+r � J = s holds. Integrating over
V and applying the divergence theorem yields

d

dt

Z
V

mdV = �

I
@V

J � ndA+

Z
V

s dV:

At events. Suppose �� � � on support E. By the reset operator, �� ! 0 on E, forcing
m = ��� ! 0 there. This produces an instantaneous drop of �

R
E
�mreset dV in the domain integral.

Redistribution of � via Jevent contributes an explicit boundary �ux term, which by admissibility
preserves non-negativity. Any instantaneous sources s(x; t�) are included explicitly.

Conclusion. Thus the Fold budget is closed both between events and across events, with all
changes accounted for by boundary �uxes, sources, and reset terms.

3.4 Reset Locality

Theorem 3.4 (Reset Locality). Let t� be an event time on support E � V where ��(x; t�) � �(x).
De�ne the reset operator

(�(x; t��); ��(x; t��)) 7! (�0(x; t�+); 0);

where �0 is obtained via an admissible redistribution �ux Jevent preserving �0 � 0. Then the post-
event dynamics on (t�;1) depend only on the reset state (�0(x; t�+); 0), and not on the pre-event
history of �� .

Proof. The Fold-Time �� evolves between events by

@t�� = ��� ��� ; � > 0; � � 0:

This ODE is memoryless once initial data are �xed: its solution for t > t� depends only on the
value of ��(t�+) and the subsequent evolution of �. At a collapse event, the reset operator enforces
��(t�+) = 0 by de�nition. Thus all dependence on �� prior to t� is erased.

Meanwhile, � may redistribute via Jevent but this redistribution is instantaneous and admissible
(no creation of negative density). The new �eld �0 is therefore a well-de�ned input for the governing
PDE on (t�;1).

Hence the post-event trajectory is uniquely determined by the reset state (�0(x; t�+); 0). No
hidden dependence on the pre-event trajectory of �� remains, establishing locality of the reset.
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3.5 Anti-Zeno Property

Theorem 3.5 (Anti-Zeno Property). Let �(x; t) � 0 remain bounded on �nite time intervals, with
constants � > 0, � � 0, and threshold �(x) > 0 bounded away from zero. Suppose ��(x; t) evolves
between events by

@t�� = ��� ��� ;

and that at an event time t� the reset rule

��(x; t�+) = 0 on the event support

is applied. Then no in�nite sequence of collapse events can accumulate in �nite time; i.e. the event
times ftng satisfy tn !1 as n!1.

Proof. Immediately after a reset at t�, ��(x; t�+) = 0. Between events,

@t�� � ��max;

where �max is the �nite essential bound of � on the interval. Hence the time required for �� to grow
from 0 to threshold �(x) > 0 is bounded below by

�t �
�min

��max + ��min
> 0;

where �min is the positive essential in�mum of �(x) on the event support. Thus each event must be
separated from the next by at least a �xed positive dwell time.

Therefore, an in�nite sequence of events cannot occur within �nite time: the inter-event intervals
are uniformly bounded away from zero. This excludes Zeno-type accumulation, proving the claim.

4 Comparison to Other Conservation Laws

Conservation principles in physics and mathematics rely on the positivity of an associated density.
Without this requirement, the integral balance laws would lose physical and probabilistic meaning.
Here we compare the Fold invariance law with several classical examples.

Law Conserved density Continuity form Positivity

Mass (�uids) �(x; t) @t�+r� (�v) = 0 � � 0

Probability (QM) j (x; t)j2 @tj j
2 +r� J = 0 j j2 � 0

Entropy (thermo) s(x; t) @ts+r� Js � 0 s � 0

Energy (mechanics) e(x; t) @te+r� Je = 0 e � 0

Fold invariance (PFT) m = � �� @tm+r�J = 0 (between events) � � 0; �� � 0

Table 1: Each law requires a non-negative density. Fold joins this family with m = ��� , closed by
event resets.

5 Numerical Blueprint

We outline a minimal event-aware scheme encoding the Fold dynamics. Letmn
i �

1
�x

R
Ci
m(x; tn) dx

on a 1-D mesh with cells Ci and timestep �t.
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Between events (conservative update).

mn+1
i = mn

i �
�t

�x

�
Fn
i+ 1

2

� Fn
i� 1

2

�
+ sni �t;

where Fi� 1

2

are numerical �uxes chosen by closure:

� Di�usive: Fi+ 1

2

= �D
mn

i+1�m
n
i

�x
.

� Advective (upwind): Fi+ 1

2

=

(
vmn

i ; v � 0;

v mn
i+1; v < 0:

� (Wave-like closures deferred to Appendix/Repo.)

Accumulator update. With m = ��� and local �n
i � 0,

��n+1
i = ��ni +�t

�
��n

i � ���ni
�
:

Event detection and reset. If ��n+1
i � �i, mark i 2 En; then set ��n+1

i =0 for i 2 En and apply
an admissible redistribution for � (equivalently m) via Jevent that preserves non-negativity.

Audits (per step).

1. Positivity: verify mn+1
i � 0; if needed, clip tiny negatives of size O(10�12) from roundo�.

2. Budget closure: check
P

im
n+1
i �

P
im

n
i +

�t
�x

P
i(F

n
i+ 1

2

�Fn
i� 1

2

)��t
P

i s
n
i = �

P
i2En �mreset;i.

3. Anti-Zeno: enforce �t � 1
2 �min=(��max) to respect the inter-event lower bound.

Notes on stability/positivity. Use an upwind (or Rusanov) �ux for advection and an explicit

di�usion step with �t � �x2

2Dmax
. Both choices are positivity-preserving under the stated CFL

conditions.

Reference implementation. Appendix A lists a 1-D Python reference solver (di�usive/advective
closures) in �80 lines. A reproducible script with audit logs accompanies the repository.

Sketch event-aware solver: �nite-volume for m, hazard detection for �� , reset operator, audit
logs.

6 Conclusion

Module 2.2 establishes the minimal theorem set showing that Fold-Time invariance is mathemat-
ically well-posed. Through �ve core results�positivity, existence and uniqueness, budget closure,
reset locality, and the anti-Zeno property�we proved that the Fold equations form a stable hybrid
system: continuous dynamics between events, punctuated by resets that preserve locality and close
the ledger.

Comparison with classical conservation laws demonstrates that the Fold law belongs to the
same family: like mass, probability, entropy, and energy, its invariant quantity m = ��� requires
non-negativity of its density to remain interpretable. The law is therefore not an outlier but a
disciplined extension of the conservation principle.
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The numerical blueprint shows how these theorems can be embedded in �nite-volume solvers with
event-aware updates and audit checks. This bridges abstract proof with practical implementation,
ensuring that positivity and budget closure can be monitored step by step. A reference solver
provided in the appendix demonstrates feasibility.

Together with Module 2.1, which con�rmed fold-time invariance across toy systems and dimen-
sions, and Module 1, which de�ned the structural law itself, this module completes the foundational
mathematical sca�old. What remains open are calibrated closures, empirical identi�cation of thresh-
old maps �(x), and larger-scale simulations. These are deferred to later modules.

The contribution of Module 2.2 is therefore organizational and validating: it shows that the Fold
law can be treated with the same rigor as other conservation laws, and that its event-reset structure
can be proved consistent, stable, and simulation-ready. Subsequent modules will carry this sca�old
into applications and falsi�able tests.

Implications for Prime Fold Theory

The mathematical results of this module establish that the Fold invariance law is not only con-
ceptually well-motivated but also rigorously well-posed. The �Big Five� theorems � positivity,
existence/uniqueness, budget closure, reset locality, and anti-Zeno � guarantee that the Fold dy-
namics behave as a legitimate conservation principle under admissible closures.

This strengthens the foundations laid in Module 1, where Fold-Time was introduced as a struc-
tural primitive, and provides the mathematical armor behind the simulation results of Module 2.1.
In particular, the proof that m = ��� remains non-negative and bounded through cycles con�rms
that Fold dynamics can stand alongside mass, probability, and energy as a conservation law.

For concreteness, Appendix B provides simple examples (quake toy stress dynamics and a uni-
form event redistribution) that demonstrate how the abstract theorems of this module manifest in
practice and connect directly to the simulations of Module 2.1.

Thus, Module 2.2 closes the logical gap between the conceptual law of invariance and the em-
pirical demonstrations, preparing the ground for future modules that extend these dynamics to
cosmological and neural domains.
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A Reference Solver (1-D)

Purpose. Minimal event-aware �nite-volume solver demonstrating the Five Theorems numerically.

Pseudocode (Python-like).

# mesh, params, arrays: m, tau, phi, kappa

for n in range(Nsteps):

# fluxes (choose one closure)

for i in cells:
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F[i+1/2] = diffusive_flux(m[i], m[i+1]) # or upwind(v, m[i], m[i+1])

# conservative update for m

m_new[i] = m[i] - dt/dx * (F[i+1/2]-F[i-1/2]) + s[i]*dt

m_new[i] = max(m_new[i], 0.0) # clip tiny negatives

# recover phi if needed (e.g. phi = max(eps, m_new / max(tau, eps)))

phi[i] = max(phi_min, m_new[i] / max(tau[i], tau_min))

# accumulator update

tau_new[i] = tau[i] + dt*(eta*phi[i] - eps*tau[i])

# event detection + reset

if tau_new[i] >= kappa[i]:

dropped = m_new[i] # since tau -> 0 on event

tau_new[i] = 0.0

m_new[i] = event_redistribute(m_new, i) # no negatives created

budget_log += dropped

# audits

assert m_new[i] >= -1e-12

# end loop

The code enforces: (i) positivity by construction; (ii) budget closure via a running ledger of reset
drops; (iii) anti-Zeno via a timestep bound tied to �=(��max). Full scripts and plots are provided
in the repository.

B Exemplars of Admissible Closures

For concreteness, we list three canonical closures. They are not exhaustive, but span the dominant
PDE families encountered in continuum physics:

� Di�usive (parabolic). J = �Drm, D � 0. Dissipative smoothing with maximum princi-
ple.

� Advective (transport). J = vm. Pure translation along characteristics, preserves sign.

� Wave-like (hyperbolic with damping). @tm +r� P = 0; @tP + c2rm = �
P , 
 � 0.
Finite-speed propagation, energy-damped.

Each of these exemplars preserves positivity, admits existence and uniqueness, and respects
budget closure under the Fold invariance law.

C Illustrative Examples

This appendix provides two simple demonstrations of the theorems in action, linking the abstract
results of Module 2.2 to the toy simulations of Module 2.1.
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C.1 Quake Toy and Positivity Preservation

In the spring�block quake toy, the fold-time variable �� is identi�ed with the accumulated stress:

@t�� = k(V t� x)� Ffric( _x);

with k; V > 0 and Ffric( _x) � 0. Since the forcing term is non-negative and the dissipation cannot
push �� below zero, the dynamics directly instantiate Theorem 3.1: ��(t) � 0 for all t. Simulations
in Module 2.1 con�rm this to machine precision across all parameter sweeps, providing a concrete
check of positivity preservation.

C.2 A Simple Event Redistribution

At collapse (�� � �), the reset rule sets �� ! 0 on the event set E. One admissible redistribution
operator is a uniform share of � among the 2d nearest neighbors in a d-dimensional lattice:

�0(xi) =

8><
>:
0; xi 2 E;

�(xi) +
1
2d

P
xj2N(i)\E

�(xj); xi =2 E;

where N(i) denotes the neighboring sites of xi. This operator preserves non-negativity by construc-
tion, and ensures that the total budget of m = ��� is unchanged except for the reset term, exactly
as required in Theorem 3.3.

These examples show how the abstract theorems of Module 2.2 are concretely realized in simple
fold dynamics, and how they connect to the simulations of Module 2.1.
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